
M1.(a	i) ((i)	Green Ignore shades of green.	1
		(ii)	Excess acidified potassium dichromate(VI)	1
			Reflux (for some time)	1
			 In the diagram credit should be given for a vertical condenser Lose M3 and M4 for a distillation apparatus. 	1
			 an apparatus which would clearly work Do not allow this mark for a flask drawn on its own. Penalise diagrams where the apparatus is sealed. 	1
		(iii)	Distillation	1
			Immediately (the reagents are mixed)	1
	(b)	Ke	ep away from naked flames Allow heat with water-bath or heating mantle. If a list is given ignore eye protection, otherwise lose this mark.	1

(c)	(i)	Tollens' or Fehling's reagents Incorrect reagent(s) loses both marks. Accept mis-spellings if meaning is clear.	1	
		Silver mirror / red ppt. formed Accept 'blue to red' but not 'red' alone.	1	
	(ii)	Sodium carbonate (solution) / Group II metal Allow indicator solutions with appropriate colours. Accept any named carbonate or hydrogen carbonate.	1	
		Effervescence / evolves a gas Accept 'fizzes'.	1	
(d)	Proj	panoic acid If this mark is lost allow one mark if there is reference to stronger intermolecular forces in the named compound. Lose M1 and M3.	1	
	Contains hydrogen bonding			
	Some comparison with other compounds explaining that the intermolecular forces are stronger in propanoic acid			

M2.D

M3. (a)
$$CH_3COCI + AICI_3 \rightarrow CH_3^{+}COCI + AICI^{+}$$

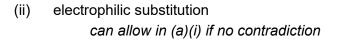
(1) equation (1)

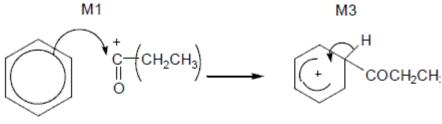
penalise wrong alkyl group once at first error position of + on electrophile can be on O or C or outside [] penalise wrong curly arrow in the equation or lone pair on AICl₃ else ignore

M2 not allowed independent, but can allow M1 for attack of H on C+ formed

(c) dehydration or elimination

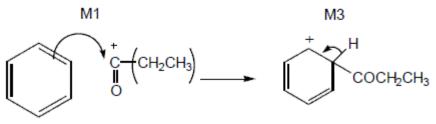
(conc) H₂SO₄ or (conc) H₃PO₄ allow dilute and Al₂O₃ Do not allow iron oxides


[14]


4

l

1


M4.	(a)	(i) $C_6H_6 + CH_3CH_2COCI \rightarrow C_6H_5COCH_2CH_3 + HCI$ OR	
		$C_6H_6 + CH_3CH_2CO^+ \rightarrow C_6H_5COCH_2CH_3 + H^+$ allow C_2H_5 penalise $C_6H_5-CH_3CH_2CO$ allow + on C or O in equation	1
		Phenylpropanone	
		OR ethylphenylketone OR phenylethylketone Ignore 1 in formula, but penalise other numbers	1
		AICI ₃ can score in equation	1
		CH ₃ CH ₂ COCI + AICI ₃ → CH ₃ CH ₂ CO ⁺ + AICI ₄ ⁻ allow C_2H_5 allow + on C or O in equation	1
		$AICI_{4^-} + H^{\scriptscriptstyle +} \to AICI_{3} + HCI$	1

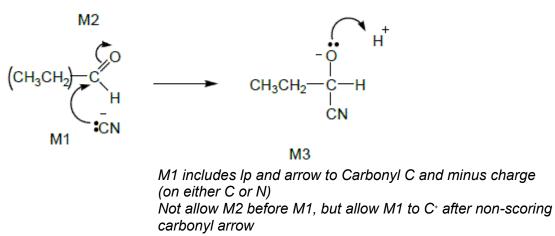
M2 for structure

OR

M2

M1 arrow from circle or within it to C or to + on C horseshoe must not extend beyond C2 to C6 but can be smaller + not too close to C1 M2 penalise C_6H_5 --CH₃CH₂CO (even if already penalized in (a)(i)) M3 arrow into hexagon unless Kekule allow M3 arrow independent of M2 structure ignore base removing H in M3

(b) (i) $CH_{3}CH_{2}CHO + HCN \rightarrow CH_{3}CH_{2}CH(OH)CN \text{ OR } C_{2}H_{5}CH(OH)CN$ aldehyde must be –CHO brackets optional


2-hydroxybutanenitrile **OR** 2-hydroxybutan<u>o</u>nitrile *no others*

1

1

3

(ii) nucleophilic addition

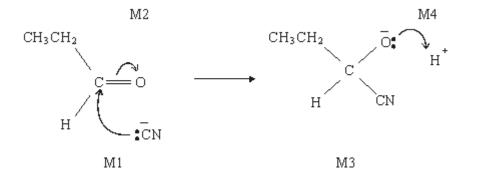
Ignore δ +, δ – on carbonyl group, but if wrong way round or full + charge on C lose M2

M4

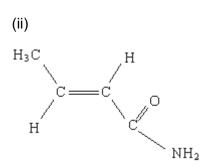
M3 for correct structure including minus sign. Allow C_2H_5 M4 for Ip and curly arrow to H^4

(iii) (propanone) slower **OR** propanal faster

inductive effects of alkyl groups ORC of C=O less δ + in propanone ORalkyl groups in ketone hinder attack OReasier to attack at end of chain *if wrong, no further marks*


M5. (a) nucleophilic addition

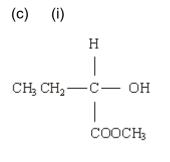
[18]


4

1

1

(b) (i) 2-hydroxybutanenitrile


(allow 1 for amide even if not C_4H_7NO , i.e. $RCONH_2$)

(if not amide, allow one for any isomer of C_4H_7NO which shows geometric isomerism)

2

4

1

(ii) 0 || CH₃ CH₂ — C — COOH (iii) CH₃CH=CHCOOH

1

1